臺灣地區黃條葉蚤對殺蟲劑之感受性

馮海東* 蘇育仁 許如君

臺中縣霧峰鄉 行政院農業委員會農業藥物毒物試驗所

（接受日期：中華民國89年1月24日）

馮海東、黃育仁、許如君 2000 臺灣地區黃條葉蚤對殺蟲劑之感受性 植保會刊 42：67～72.

黃條葉蚤（Phyllotreta striolata (Fabricius)），屬鞘翅目，金花蟲科，生性活潑，善跳躍，幼蟲爲害十字花科植株之地下部，成蟲啃食地上部葉片，造成嚴重為害（5）。此害蟲在世界上分佈甚廣（13），各地防治該蟲方法不一，不過噴灑殺蟲劑還是較簡單且快速可行的方法。該蟲在臺灣亦是蔬菜的重要害蟲，每年南部於春夏、北部於夏秋間發生，尤其於乾燥之季節發生特別嚴重（3, 6, 7）。防治此蟲，本地菜農通常只針對爲害地上部之成蟲施以藥劑防除。1946 年以前，在蔬菜幼苗初期施用砷酸鉛、砷酸鈣等藥劑，於近採收期則施用魚藤精及除蟲菊等藥劑來進行防治，但效果並不理想（3, 6）。1949 年始，BHC 及 DDT 被廣泛使用後，便成爲當時防治黃條葉蚤之特效藥（6），在 1950 年以後此蟲爲害輕微（4）。1971 年後，此蟲又再度猖獗，一般相信這與 1969 年 BHC 及 DDT 之禁止使用有關（5）。

1965 年，政府開始推廣加保利（carbaryl）、馬拉松（malathion）、美圖松（mevinphos）及安殺香（endosulfan）來防治黃條葉蚤（4），其中，除安殺香乳劑於 1989 年因劇毒及具殘留性遭禁用，其餘藥劑則繼續推薦使用至今。1996 年，因各地農民反映該蟲爲害嚴重，藥劑防治效果不佳，經重新篩選藥效，公佈新防治藥劑：佈飛松（profenofos）、極殺滅（oxamyl）、培丹（cartap）及阿巴汀（abamectin）等，期盼能有效控制此蟲。

藥劑防治效果不佳，是否因此蟲已產生抗藥性？是值得探討的問題。根據Georghiou and Lagunes-Tejeda (1991) (9) 的報告，黃條葉蚤曾經報導對 DDT、阿特靈（aldrin）、地特靈（dieldrin）、靈丹（lindane，γ-BHC）產生抗藥性，此外，有關該蟲之抗藥性研究十分缺乏。本實驗主要針對 1997 年公佈推廣用於黃條葉蚤之藥劑進行測試，調查不同地區黃條葉蚤對目前防治用藥劑之感受性，一

*通訊作者。E-mail: feng@tactri.gov.tw
方面藉由防治效力的評估，了解田間害蟲抗藥性之現況，供給改進防治策略參考；另一方面記錄新推薦藥劑之感受性基準，可供日後調查比較使用。

依據 1997 年政府推薦用於黃條葉蚤之防治藥劑，以市售成品農藥為試驗材料，各種藥剤之劑型及廠牌如下：佈飛松（profenofos）43% EC（瑞士巴斯克嘉基公司）、美文松（mevinphos）25.3% EC（世大農化製造股份有限公司）、馬拉松（malathion）50% EC（台灣省農會附設各級農會農化廠）、加保利（carbaryl）85% WP（台灣省農會附設各級農會農化廠）、歐殺滅（oxamyl）24% SL（生力化學工業股份有限公司）、培丹（cartap）50% SP（興農股份有限公司）、阿巴汀（abamectin）2% EC（台灣三笠化學工業股份有限公司）及白克松（pyraclostro）35% WP（豊農化製造股份有限公司），以上各藥剤之有效成分均經檢驗，其含量符合規格，並以實測含量為各濃度藥劑配製之計算基準。

供試之昆蟲則於 1997 年採自新竹竹北、台中霧峰、彰化溪湖、雲林縣界、嘉義六腳及高雄路竹等六個地區。在田間利用吸蟲管或自吸塵器改裝而成的吸蟲器捕捉害蟲，攜回實驗室後，將供試蟲放進網籠內，供試油菜苗爲食物，置於 22±1℃，70% RH，12D:12L 生長箱內，隔日採存活蟲供感受性試驗。

測試時，將切開直徑為 2.5 cm 之甘藍葉片浸於用水稀釋製成之各濃度藥劑內 5 秒，再晾乾放入指形管（10 (H) x 3 (OD) cm）中，管底放泡綿（4x4x4 cm）並加水 5 ml 以保持葉片溼潤。葉片放入時，葉背朝上整平。再利用吸蟲管將供試蟲接入，每支指形管 11-13 對，管口以餐紙蓋住。每濃度處理四個重覆。

接蟲後之指形管置於定溫箱（22±1℃，70% RH，12D:12L），24 小時後觀察死亡率，結果以對數分析（probit analysis）（11），計算各藥剤對黃條葉蚤之半數致死濃度以及相關介量。

害蟲抗藥性管理的策略擬訂，首賴田間實際情況之掌握，需經常性收集各地區害蟲對各種防治藥劑的感受性資訊，因此，經常性之抗藥監測工作，應開發統一、簡便而快速的偵測方法來適時提供可相互比較之結果數據。黃條葉蚤之生物檢定技術方面所遭遇之問題是（1）由於黃條葉蚤在室內進行大量飼養不易，據陳（8）之飼養方法雖可完成世代，但其方法無法得到大量蟲體，所以本實驗供試蟲即參考 P. cruciferae 抗性監測之方法（12），以直接由田間採集成蟲進行測試。不過田間採集之蟲體群比室內飼養之個體差異性大，較易影響實驗造成較大誤差。2）生物檢定方法之選用方面，本試驗初期以霧峰地區族群爲材料，進行葉片噴藥法（spray tower method）（12），採用飼食法進行檢定，有關殘藥之葉片處理方法，在比較噴藥法（12）和浸藥法（dipping）兩種方法後，結果噴藥法比浸藥法所測試出五種藥剤之感受性平均低約 4 倍，顯示浸藥法所著藥較均勻且藥量較高（未發表結果）；另因本實驗採用成品農藥，爲了排除使用粉劑而阻塞噴藥塔（potter spray tower）噴頭，造成藥液噴灑異常且著藥不均，改採較簡易且穩定性較高的葉片浸藥法來處理葉片，另一方面因爲未使用特殊儀器設備，較易分由各地區監測人員自行操作。

採自六個地區之黃條葉蚤對各供試藥劑之感受性（如表一）顯示，黃條葉蚤
對佈飛松、美文松及培丹之感受性最高，對馬拉松及加保利則最低，LC\textsubscript{50} 接近或大於 10 mg/mL，黃條葉蚤對供試藥劑的感受性差異可達 26 倍。與 1996 年防治
黃條葉蚤之農藥田間試驗 (1) 數據相比（表二），除美文松外，各藥劑之室內測定
毒性與田間藥效之結果有相當一致之趨勢；本實驗結果，佈飛松及培丹對黃條葉
蚤之毒性最高，而其田間防治率均達 9 成以上；馬拉松和加保利之毒性低而其
田間防治率達未達 7 成。美文松毒性雖高，但因其消退快速，田間半衰期僅 2-3
天，故依據該試驗方法七天施藥一次，施藥後七天調查，其防治率僅有 68% (1)
可能低估美文松之初效，故美文松仍可供採收前緊急防除用；培丹在土壤中的半
衰期雖僅 3 天，因其在田間是用粒劑 (1)，故不受限於其調查方法。阿巴汀毒性低
且田間施藥量較其它藥劑為低，但防治率可達 9 成，推測與阿巴汀之田間半衰期

表一．六個地區之黃條葉蚤對各供試藥劑濃度及死亡率相關性之各介量、LC\textsubscript{50} 及 LC\textsubscript{90}

Table 1. Probit analysis of the toxicity of the 8 insecticides to \textit{Phyllotreta striolata}
collected from 6 locations

<table>
<thead>
<tr>
<th>Insecticide and location (1)</th>
<th>regression parameters</th>
<th>(\text{LC}_{50}) (mg/ml) (95% fiducial limits)</th>
<th>(\text{LC}_{90}) (mg/ml) (95% fiducial limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profenofos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsinchun</td>
<td>6.25 1.23 ± 0.17</td>
<td>0.109 (0.033-0.196)</td>
<td>1.053 (0.504-8.07)</td>
</tr>
<tr>
<td>Taichung</td>
<td>6.54 1.99 ± 0.24</td>
<td>0.168 (0.071-0.303)</td>
<td>0.740 (0.386-5.06)</td>
</tr>
<tr>
<td>Changhua</td>
<td>7.91 2.74 ± 0.40</td>
<td>0.087 (0.068-0.106)</td>
<td>0.255 (0.199-0.379)</td>
</tr>
<tr>
<td>Yunlin</td>
<td>5.77 1.83 ± 0.23</td>
<td>0.382 (0.296-0.500)</td>
<td>1.91 (1.27-3.57)</td>
</tr>
<tr>
<td>Chiayi</td>
<td>5.93 1.65 ± 0.21</td>
<td>0.275 (0.213-0.369)</td>
<td>1.64 (1.02-3.43)</td>
</tr>
<tr>
<td>Kaichaung</td>
<td>6.12 1.62 ± 0.23</td>
<td>0.206 (0.114-0.329)</td>
<td>1.27 (0.677-5.23)</td>
</tr>
<tr>
<td>Mevinphos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsinchun</td>
<td>7.98 2.88 ± 0.30</td>
<td>0.092 (0.077-0.108)</td>
<td>0.257 (0.211-0.337)</td>
</tr>
<tr>
<td>Taichung</td>
<td>8.25 2.81 ± 0.38</td>
<td>0.069 (0.055-0.084)</td>
<td>0.198 (0.157-0.282)</td>
</tr>
<tr>
<td>Changhua</td>
<td>9.18 2.81 ± 0.59</td>
<td>0.033 (0.019-0.043)</td>
<td>0.093 (0.074-0.139)</td>
</tr>
<tr>
<td>Yunlin</td>
<td>6.59 2.08 ± 0.25</td>
<td>0.173 (0.114-0.258)</td>
<td>0.712 (0.430-1.92)</td>
</tr>
<tr>
<td>Chiayi</td>
<td>7.55 2.50 ± 0.29</td>
<td>0.095 (0.077-0.115)</td>
<td>0.309 (0.241-0.439)</td>
</tr>
<tr>
<td>Kaichaung</td>
<td>8.48 3.30 ± 0.48</td>
<td>0.088 (0.071-0.107)</td>
<td>0.215 (0.169-0.313)</td>
</tr>
<tr>
<td>Malathion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsinchun</td>
<td>3.61 1.46 ± 0.17</td>
<td>9.03 (7.01-12.1)</td>
<td>68.2 (41.3-147)</td>
</tr>
<tr>
<td>Taichung</td>
<td>3.87 1.19 ± 0.18</td>
<td>9.04 (6.50-13.4)</td>
<td>109 (53.6-382)</td>
</tr>
<tr>
<td>Changhua</td>
<td>3.62 1.57 ± 0.28</td>
<td>7.63 (5.49-12.8)</td>
<td>50.2 (24.5-213)</td>
</tr>
<tr>
<td>Yunlin</td>
<td>2.98 1.49 ± 0.24</td>
<td>22.7 (15.8-39.8)</td>
<td>164 (77.6-669)</td>
</tr>
<tr>
<td>Chiayi</td>
<td>2.60 2.22 ± 0.29</td>
<td>12.1 (9.58-16.0)</td>
<td>46.0 (31.1-85.3)</td>
</tr>
<tr>
<td>Kaichaung</td>
<td>3.43 1.57 ± 0.21</td>
<td>10.1 (4.80-37.5)</td>
<td>66.2 (23.1-6200)</td>
</tr>
<tr>
<td>Pyraclostrofuran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsinchun</td>
<td>4.91 1.41 ± 0.18</td>
<td>1.18 (0.585-4.10)</td>
<td>9.58 (3.15-858)</td>
</tr>
<tr>
<td>Taichung</td>
<td>4.72 1.50 ± 0.18</td>
<td>1.54 (1.16-2.19)</td>
<td>11.0 (6.34-25.7)</td>
</tr>
<tr>
<td>Changhua</td>
<td>6.67 2.83 ± 0.35</td>
<td>0.257 (0.091-0.461)</td>
<td>0.728 (0.416-0.645)</td>
</tr>
<tr>
<td>Yunlin</td>
<td>4.93 1.01 ± 0.19</td>
<td>1.16 (0.770-1.98)</td>
<td>21.4 (8.28-151)</td>
</tr>
<tr>
<td>Chiayi</td>
<td>5.43 1.81 ± 0.20</td>
<td>0.580 (0.462-0.723)</td>
<td>2.964 (2.11-4.81)</td>
</tr>
<tr>
<td>Kaichaung</td>
<td>5.55 1.68 ± 0.22</td>
<td>0.472 (0.130-1.00)</td>
<td>2.733 (1.22-59.5)</td>
</tr>
<tr>
<td>Insecticide and location</td>
<td>regression parameters</td>
<td>LC₅₀ (mg/ml) (95% fiducial limits)</td>
<td>LC₉₀ (mg/ml) (95% fiducial limits)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>intercept</td>
<td>Slope ± SE</td>
<td></td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Hsinchu</td>
<td>3.10</td>
<td>1.40 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>Taichung</td>
<td>3.03</td>
<td>1.11 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>Changhwa</td>
<td>2.71</td>
<td>1.35 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>Yunlin</td>
<td>1.81</td>
<td>1.68 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>Chiayi</td>
<td>1.60</td>
<td>1.72 ± 0.37</td>
</tr>
<tr>
<td></td>
<td>Kaichaung</td>
<td>2.68</td>
<td>1.43 ± 0.25</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Hsinchu</td>
<td>6.30</td>
<td>1.71 ± 0.18</td>
</tr>
<tr>
<td></td>
<td>Taichung</td>
<td>6.10</td>
<td>1.86 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>Changhwa</td>
<td>6.04</td>
<td>1.69 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>Yunlin</td>
<td>5.04</td>
<td>1.57 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>Chiayi</td>
<td>4.97</td>
<td>1.83 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>Kaichaung</td>
<td>5.32</td>
<td>1.89 ± 0.27</td>
</tr>
<tr>
<td>Cartap</td>
<td>Hsinchu</td>
<td>7.20</td>
<td>2.24 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>Taichung</td>
<td>7.37</td>
<td>2.62 ± 0.34</td>
</tr>
<tr>
<td></td>
<td>Changhwa</td>
<td>8.54</td>
<td>3.06 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>Yunlin</td>
<td>7.32</td>
<td>2.46 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>Chiayi</td>
<td>7.57</td>
<td>2.82 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>Kaichaung</td>
<td>7.16</td>
<td>2.42 ± 0.36</td>
</tr>
<tr>
<td>Abamectin</td>
<td>Hsinchu</td>
<td>5.65</td>
<td>1.06 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Taichung</td>
<td>6.17</td>
<td>1.42 ± 0.23</td>
</tr>
<tr>
<td></td>
<td>Changhwa</td>
<td>5.96</td>
<td>1.05 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>Yunlin</td>
<td>5.77</td>
<td>1.47 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>Chiayi</td>
<td>4.81</td>
<td>2.09 ± 2.27</td>
</tr>
<tr>
<td></td>
<td>Kaichaung</td>
<td>5.38</td>
<td>1.39 ± 0.22</td>
</tr>
</tbody>
</table>

1) Date and host plant of the collections were as follows: Hsinchu (Chubei): 1997-5-6, mustard; Taichung (Wufeng): 1997-2-20, mustard; Changhwa (Chihiu): 1997-3-12, Chinese cabbage; Yunlin (Lunpe): 1997-3-24, mustard; Chiayi (Liuchiao): 1997-10-16, Chinese cabbage; Kaichaung (Luchu): 1997-4-14, Chinese cabbage.

達 28 天有關。雖然依據該試驗調查結果田間防治率不錯，不過阿巴汀、歐殺滅
及白克松的田間半衰期長，阿巴汀和白克松的安全採收期更達 15 天，並不適宜
於葉菜類的短期作物上推薦使用。

比較地區間黃條葉蚤族群對藥劑的接受性，彰化地區之品系對佈飛松、美文
松、馬拉松、培丹、阿巴汀及白克松等六個藥劑的接受性最高，新竹地區之蟲品
系則對加保利及歐殺滅接受性最高；雲林地區之蟲品系對佈飛松、美文松及馬拉
松等三個藥劑的接受性最低，嘉義地區之蟲品系則對加保利、歐殺滅及阿巴汀的
表二。黃條葉蚤對八種殺蟲劑的感受性及田間防治率

表2. LC50, field application concentration, control rate and dissipation half-life of the 8 insecticides to control *Phyllotreta striolata*

<table>
<thead>
<tr>
<th>Pesticides</th>
<th>LC50 (mg/ml)</th>
<th>Application concentration (g/L)</th>
<th>Preharvest interval (days)</th>
<th>Control rate (%)</th>
<th>Field dissipation half-life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartap</td>
<td>0.070-0.129</td>
<td>0.50</td>
<td>10</td>
<td>94</td>
<td>3 (in soil)</td>
</tr>
<tr>
<td>Profenofos</td>
<td>0.087-0.382</td>
<td>0.43</td>
<td>12</td>
<td>94</td>
<td>9</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>0.033-0.173</td>
<td>0.30</td>
<td>3</td>
<td>68</td>
<td>2-3</td>
</tr>
<tr>
<td>Pyraclofos</td>
<td>0.257-1.54</td>
<td>0.35</td>
<td>15</td>
<td>94</td>
<td>29 (in water)</td>
</tr>
<tr>
<td>Abamectin</td>
<td>0.153-1.24</td>
<td>0.01</td>
<td>15</td>
<td>88</td>
<td>28</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>0.174-1.05</td>
<td>0.50</td>
<td>6</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>Malathion</td>
<td>7.63-22.7</td>
<td>0.50</td>
<td>4</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>23-94.3</td>
<td>1.00</td>
<td>7</td>
<td>65</td>
<td>14</td>
</tr>
</tbody>
</table>

1) Data from cited reference (2).
2) Data from cited reference (1).
3) Data from cited reference (10).

感受性最低：台中地區及高雄地區之蟲品系分別對白克松及培丹的感受性最低。綜述之，雲林及嘉義族群感受性較低，新竹和彰化地區則較敏感。地區間的感受性差異，以對阿巴汀的抗性比為 10 倍，達到最大，培丹的 1.8 倍差異最小。族群間對同類藥劑的感受性趨勢頗為一致，研判可能對同一類藥劑有交互抗性的現象：雲林族群對有機磷藥的感受性最低，彰化族群的感受性最高；嘉義族群對氨基甲酸鹽藥的感受性最低，新竹族群的感受性最高；各地區族群可能因獨特的篩選壓力而發展出不一樣的抗藥性機制。

地區間黃條葉蚤對加保利、馬拉松、美文松自1965年推薦用藥三十餘年以來，地區間感受性差異僅分別達 4.1、3.0、5.2 倍。不若一些鱗翅類害蟲產生抗藥性之程度高以及速度快。黃條葉蚤幼蟲蛀食植株根部，成蟲為害葉片（3, 6）。而菜農常只針對葉片施與藥劑防除，故僅有在果實接觸藥劑遭受選汰且黃條葉蚤成蟲活動力強，壽命可達 20-30 天，易在時空中逃避藥劑範圍，因此其抗藥性發展可能較慢。唯本試驗發現，僅推薦 3 年的阿巴汀，地區間的葉蚤的感受性差異已達 10 倍，是否和此藥大量使用有關，以及其後續抗性變化值得注意。

引用文獻

1. 不具名。1996。蔬菜黃條葉蚤 81-85 頁。農業藥劑委託試驗報告。行政院農委會藥毒所編印。325 頁。(出版中)
2. 不具名。1997。蔬菜病蟲害綜合防治專輯。行政院農業委員會、臺灣省政府農林廳編印。
3. 李錫山。1953。蔬菜主要害蟲—黃條葉蚤之發生消長及其防治試驗。農業研究4(3)：30-35。
4. 賢毅緌。1984。臺灣主要蔬菜害蟲之經濟重要性變遷與防治展望3-30頁。蔬菜害蟲研討會專刊。211頁。
5. 陶家駒。1976。臺灣十字花科蔬菜害蟲相及其防治法之演變。科學農業 24 (9-10) : 400-402。

6. 陶家駒、李錫山。1951。黃條葉蚤藥劑防治試驗報告。農業研究 2(4) : 61-67。

7. 陳慶忠、柯文華、李建霖。1990。黃條葉蚤之生態及防治研究 (I) 外部形態、飼養方法、生活習性及寄主植物調查。台中區農業改場研究彙報 27 : 37-48。

ABSTRACT

Susceptibility of *Phyllotreta striolata* collected from six locations to eight recommended insecticides used in Taiwan was assayed by leaf-feeding method. The results showed that the beetle was more susceptible to cartap, mevinphos, and profenofos, and was most tolerant to carbaryl and malathion. Higher toxicity agreed in better control efficacy as compared the results with the efficacy from a 1996 field trial. The beetles from different locations showed different pattern of susceptibility to the tested insecticides. The Yunlin strain was most resistant to organophosphorus insecticides and the Chiayi strain was most resistant to carbamates and abamectin.

(Key words: *Phyllotreta striolata*, insecticides, susceptibility)

Corresponding author. E-mail: feng@tactri.gov.tw