有機肥料中重金屬含量調查及對作物生長影響之評估

林浩潭 賴七仙 李國欽

臺中縣霧峰鄉臺灣省農業藥物毒物試驗所

(接受日期：民國83年8月25日)

摘 要

林浩潭、賴七仙、李國欽 1994 有機肥料中重金屬含量調查及對作物生長影響之評估 植保會刊 36:201-207.

調查市售121個有機肥料樣品（腐植酸19個，混合有機質肥料102個）中砷、鎘、銅、汞、鎳、鉛、鋅等八種重金屬含量，與垃圾堆肥中重金屬含量上限比較，發現含量超過此一上限之樣品百分比較高之重金屬為銅、鎳、鋅等三種重金屬；進一步推算因施用有機肥料而進入土壤中之重金屬量及達至作物受土壤重金屬毒害所須之時間，結果顯示銅每年可能增加量為0.04 mg/kg，鎘為0.04 mg/kg，銅為7.51 mg/kg，銅為1.57 mg/kg，汞為0.005 mg/kg，鎳為0.23 mg/kg，鉛為0.32 mg/kg，鋅為5.78 mg/kg。連續施用有機肥料致使作物受土壤中重金屬毒害之估計時間砷為268年，鎘為57.8年，銅為8.10年，銅為26.7年，汞為340年，鎳為353年，鉛為241年，鋅為27.4年。

(關鍵詞：有機肥料、重金屬、砷、銅、鎘、銅、汞、鎳、鉛、鋅、作物毒害)

緒 言

本省地處亞熱帶地區，氣候高溫多雨，土壤沖刷厲害，農業栽培經營趨於集約化及單一化，土壤中有機質含量一向偏低；加上農民長期大量施用化學肥料，致使土壤pH值降低(3)，土壤之生物性、化學性、物理性變劣，影響農作物產量與品質，故近年來農政有關單位提倡施用有機肥料，藉以增進及穩定土壤之粒團作用，使土壤之通氣、透水性良好，增加土壤之緩衝能力，提高肥力，增進農作物生產(4)；有機肥料之原料來源相當複雜，有：動物排泄物、作物殘渣與綠肥、食品加工之副產物、工業副產物、林業殘餘物、都市廢棄物等(9)。如有機肥料之原料或在其加工過程中受到重金屬之污染，則肥料中重金屬易經由施肥作用而污染土壤與農產品，繼而
影響生態環境與人類健康，值得密切注意(7),(9)。本研究經由調查市場營業機肥料中砷、鎘、銅、汞、鎳、鉛、鋅等八種重金屬之含量，依據其施用量，施用次數，並參考重金屬對作物之毒性資料推算其對作物及作物之重金屬含量，及達致作物受土壤重金屬藥害所須之時間，評估其是否會危害作物生產，以供作物保護及肥料管理之參考。

材料與方法

標樣採集方法

於民國八十年九月至民國八十二年六月間，至全省農業區、肥料販及有機肥料工廠以購買方式採集121個標樣，以行政院農業委員會發布之“肥料管理規則”(5)中之肥料種類分類，計腐植酸19個，混合有機質肥料102個。

有機肥料中重金屬分析方法

1. 銅、鎘、銅、鎳、鉛、鋅之分析方法

 称取0.5克標樣入鉑氟龍(Teflon)消化瓶中，加入10毫升濃硫酸，室溫下置抽氣機中30分鐘，再加入5毫升濃鹽酸，上蓋後，入微波消化爐(Remote Microwave System, RMS-150 Floyd Inc.)中，以100%能量(623W)處理4分鐘，再以50%能量(310W)處理8分鐘，室溫下放冷後，消化液以純水定量至25毫升，以原子吸光儀(Varian SpectrAA 30)分析之。

2. 鉬之分析方法

 称取1克標樣，置300 ml 圓底燒瓶中，加入10 ml 濃硝酸，2.5 ml 濃硫酸，2.5 ml 濃過氯酸，裝上冷凝管，加熱沸騰100分鐘後，以滴管逐滴加入約4 ml 甲酸(90%)，至無紅棕色氣體發生為止，室溫下放冷後，轉入50 ml 定量瓶中，加入5 ml 濃鹽酸後，以純水定量至50 ml，再與0.6% NaBH₄ 溶液(以0.5% NaOH 配製)反應成砷(Arsine)，以原子吸光儀(Varian SpectrAA 30)附測砷裝置(VGA-76)測之。

3. 汞之分析方法

 稱取0.5克標品，置反應瓶中，加入10 ml 濃硫酸，5 ml 濃硝酸之混合液，於室溫下放置48小時後，以60℃水浴加熱4小時，使殘體溶解，加入65 ml 純水，及至少10 ml 過錳酸鉀溶液(5%)，直至紫色維持10分鐘以上為止；(如紫色消失，則再加入更多過錳酸鉀溶液)，再加入10 ml 過硫酸鈉(5%)，靜置室溫下30分鐘後，加入2 ml 之12% NaCl-(NH₂OH)₂·H₂SO₄ 混合液，使消化液變為無色為止，最後加入0.5 ml 之10% SnCl₂溶液(以0.15M HCl 配製)，以汞分析儀(Mercury analyzer 400A Buck Co.)測之。

4. 回收率試驗

 以BCR 144污泥(Sewage sludge)，NBS 1645河川底泥(River sediment)及NIES 2河川底泥(River sediment)等標準標品測試上述重金屬分析方法，3次重覆分析，所得之結果及最低檢測值各示之於表一、表二。

結果與討論

行政院農業委員會發佈施行之“肥料管理規則”中有機質肥料之定義為：包括植物質肥料、動物質肥料(含其排泄物)及其混合之肥料；而腐植酸係屬植物生長輔助劑，即不屬於三要素及次量、微量要素肥料、有機質肥料、複合肥料，而對植物生長有促進作用者(5)。

腐植酸肥料與有機質肥料中重金屬含量分析結果摘要各示之於表三及表四，由表四可知，以平均含量言，有機質肥料中八種重金屬含量以銅、鉛、鋅之含量較高。肥料管理規則”中有機質肥料項下之垃圾堆肥規定有重金屬之含量上限，重金屬含量超過比上限之
表一、本研究所用重金屬分析方法分析標準樣品所得結果

Table 1. Analytical results of standard reference materials¹

<table>
<thead>
<tr>
<th>Heavy Metal</th>
<th>BCR144</th>
<th>NBS1645</th>
<th>NIES2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Certified</td>
<td>Results</td>
<td>Certified</td>
</tr>
<tr>
<td>As</td>
<td>-</td>
<td>-</td>
<td>(66)²</td>
</tr>
<tr>
<td>Cd</td>
<td>4.8 ± 0.97</td>
<td>5.2 ± 0.20</td>
<td>10.2 ± 1.5</td>
</tr>
<tr>
<td>Cr</td>
<td>-</td>
<td>-</td>
<td>1.96 ± 0.28%</td>
</tr>
<tr>
<td>Cu</td>
<td>713 ± 26</td>
<td>707 ± 22</td>
<td>109 ± 19</td>
</tr>
<tr>
<td>Hg</td>
<td>1.49 ± 0.22</td>
<td>1.38 ± 0.20</td>
<td>1.1 ± 0.5</td>
</tr>
<tr>
<td>Ni</td>
<td>942 ± 22</td>
<td>966 ± 30</td>
<td>-</td>
</tr>
<tr>
<td>Pb</td>
<td>495 ± 19</td>
<td>422 ± 10</td>
<td>714</td>
</tr>
<tr>
<td>Zn</td>
<td>3143 ± 103</td>
<td>3180 ± 115</td>
<td>0.172 ± 0.017%</td>
</tr>
</tbody>
</table>

¹ Concentration unit is mg/kg.
² Uncertified.

表二、有機肥料中重金屬含量之最低檢測值

Table 2. Detection limits of heavy metals in organic fertilizer¹

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

¹ mg/kg on fresh weight basis.

樣品百分比亦一併示之於表四，超過上限之樣品百分比較高之重金屬種類為銅、鎘、銅等三種金屬。有機質肥料中重金屬之種類及含量與原料來源有關。因皮革之製程中，必須加入鞣酸鹽作鞣革劑(¹)，如以皮屑、皮粉或皮革工業下腳等物質做為原料，則肥料中鉛含量較高。動物飼料中，為了促進發育及防治病蟲害，常加入銅、鋅等化合物，排泄物中可能含高量之銅、鋅(⁶)，因而導致動物排泄物如雞糞、豬糞為原料製成之有機肥料，含較高量之銅、鋅。而肥料中鎘含量偏高之原因可能起因於添加鎘含量較高之礦石粉末。

重金屬在土壤中之半衰期很長，鋅為70至510年，鎘為13至1,100年，銅為310至1,500年，鉛為740至5,900年(¹⁰)；因此重金屬一旦進入土壤中，除少量由作物吸收，或經由氣化作用(如砷、汞)揮失於大氣中外(¹³,¹⁴)，很難由土壤中消失。長期經由人為因素如灌溉、施肥而進入重金屬於土壤中，會造成土壤中重金屬含量之累積，當土壤中重金屬含量達至如表七之含量時，作物可能遭受重金屬之害，引起作物減產或死亡(¹²)。如不考慮作物之吸收、移出及重金屬在土壤中之半衰期或揮失作用，以台灣地區蔬菜田推薦量每期作每公頃平均用量20,000公斤(⁸)，一年3期作，土壤每公頃重量為2,500公噸及表四之有機質肥料中重金屬含量，可推算出因有機質肥料之施用，而可能增加之土壤中重金屬之濃度，示之於表五，如以表七之土壤中可能毒害作物之最低重金屬含量(¹¹)，各
別減去表六之台灣地區土壤中重金屬平均含量 (2)，再除以表五之含量，即可得出土壤中可引起作物毒害重金屬之有機質肥料施用量數，如表八，由表八可知銅、鉻、銅、銅、銅、銅四種重金屬，其最大可能達到毒害濃度之施用期限皆小於5年，即以本調查所得有機肥料中銅、鉻、銅、銅、銅、銅之最大含量，估算其施用而使作物受土壤重金屬毒害之期限皆小於5年，值得吾人注意。上述四種重金屬中，銅、銅易為作物吸收，但其對植物之毒性高於對人畜之毒性；鉻則不易為作物吸收，因此銅、銅、銅不可能經由食物鍊而影響人體健康。但是銅易為作物吸收，且轉移累積至可食部份，且其對人畜之毒性大於對動物之毒性，土壤中之銅可經由食物鍊而影響人體健康 (2,11)。因此，為保護人體健康與作物品質，有機肥料除了必須注意其肥效外，更應加強重金屬等有害成份之管理。

表三、腐殖酸肥料中重金屬含量摘要
Table 3. Levels of heavy metals in humic acid fertilizers

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.60</td>
<td>1.99</td>
<td>32.7</td>
<td>10.6</td>
<td>0.02</td>
<td>31.9</td>
<td>11.0</td>
<td>67.7</td>
</tr>
<tr>
<td>Range</td>
<td>0.05</td>
<td>0.05</td>
<td>ND</td>
<td>0.05</td>
<td>ND</td>
<td>0.40</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

1) mg/kg on fresh weight basis.
2) ND= Not Detectable.

表四、有機質肥料中重金屬含量摘要
Table 4. Levels of heavy metals in organic fertilizer

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.46</td>
<td>1.59</td>
<td>313</td>
<td>65.5</td>
<td>0.02</td>
<td>9.44</td>
<td>13.4</td>
<td>241</td>
</tr>
<tr>
<td>Range</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.75</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Maximum Allowable Limits of Municipal refuse compost

<table>
<thead>
<tr>
<th>% of sample that over the Maximum Allowable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1.9 16 9.8 0 6.9 1 8.8</td>
</tr>
</tbody>
</table>

1) mg/kg on fresh weight basis.
2) ND= Not Detectable.
表五：因有機質肥料施用而使土壤重金屬可能增加之速率

Table 5. Increasing rates of heavy metals in soil after organic fertilizer application

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean increasing rate</td>
<td>0.04</td>
<td>0.04</td>
<td>7.51</td>
<td>1.57</td>
<td>0.0005</td>
<td>0.23</td>
<td>0.32</td>
<td>5.78</td>
</tr>
<tr>
<td>Maximum increasing rate</td>
<td>0.51</td>
<td>0.74</td>
<td>216</td>
<td>21.6</td>
<td>0.0006</td>
<td>2.76</td>
<td>3.67</td>
<td>89.5</td>
</tr>
</tbody>
</table>

1) Increasing rate is mg/kg/year, calculated from:

 \[
 \text{The level of heavy metal in organic fertilizer } \times \text{ Application rate (60,000 kg/hectare/year)} \\
 \text{Weight of soil (2,500,000 kg/hectare)}
 \]

2) Calculated from the mean level in Table 4.

3) Calculated from the maximum level in Table 4.

表六：臺灣地區土壤樣品中重金屬含量摘要

Table 6. Levels of heavy metals in soil of Taiwan

<table>
<thead>
<tr>
<th></th>
<th>Surface soil (1-15 cm depth)</th>
<th>Subsoil (15-30 cm)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>3.95</td>
<td>4.58</td>
<td>4.27</td>
</tr>
<tr>
<td>Cd</td>
<td>0.71</td>
<td>0.66</td>
<td>0.69</td>
</tr>
<tr>
<td>Cr</td>
<td>14.2</td>
<td>14.1</td>
<td>14.2</td>
</tr>
<tr>
<td>Cu</td>
<td>18.2</td>
<td>17.9</td>
<td>18.1</td>
</tr>
<tr>
<td>Hg</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Ni</td>
<td>19.0</td>
<td>18.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Pb</td>
<td>23.3</td>
<td>22.6</td>
<td>23.0</td>
</tr>
<tr>
<td>Zn</td>
<td>92.3</td>
<td>90.8</td>
<td>91.6</td>
</tr>
</tbody>
</table>

Note: Sample number is 1,374, Cd, Cr, Cu, Ni, Pb, Zn were extracted by Aqua regia, As and Hg were total content, level unit is mg/kg on dry weight basis.

表七：土壤中對作物可能發生毒害之重金屬含量

Table 7. Phytotoxic levels of heavy metals in soil

<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-50</td>
<td>3-8</td>
<td>75-100</td>
<td>60-125</td>
<td>0.3-5</td>
<td>100</td>
<td>100-400</td>
<td>250-400</td>
<td></td>
</tr>
</tbody>
</table>

Note: Level unit is mg/kg on dry weight basis.
表八、施用有機肥致使作物受土壤重金屬毒害之估計時間（年）

Table 8. Evaluation rate (year) of phytotoxic to crop by heavy metal after organic fertilizer application to soil

<table>
<thead>
<tr>
<th>Rate</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>268</td>
<td>57.8</td>
<td>8.10</td>
<td>26.7</td>
<td>340</td>
<td>353</td>
<td>241</td>
<td>27.4</td>
</tr>
<tr>
<td>2)</td>
<td>21</td>
<td>3.12</td>
<td>0.28</td>
<td>1.94</td>
<td>28.3</td>
<td>29.4</td>
<td>21</td>
<td>1.77</td>
</tr>
</tbody>
</table>

1) Evaluation rate=
The maximum phytotoxic level of heavy metal (see Table 7)-The level of heavy metal in soil (see Table 5).
The increasing rate of heavy metal in soil after organic fertilizer application.

2) Calculated by mean increasing rate in Table 5.
3) Calculated by maximum increasing rate in Table 5.

引用文獻

1. 李澤民 1989 台灣省皮革廃水防治方案之研究。台灣環境保護第三期20-43頁。
2. 林浩潭 1991 以作物中重金屬容許含量推算土壤中重金屬容許含量之探討。國立中興大學土壤學研究所碩士論文。
3. 連深 1991 酸性土壤之利用与改良。土壤管理手册。國立中興大學土壤調查試驗中心編263-274頁。
4. 楊秋忠 1990 果園土壤有機質之功能與利用。果樹營養與果園土壤管理研討會專集。台灣省台中區農業改良場編印 65-72頁。
5. 臺灣省政府農林廳、台北市政府建設局、高雄市政府建設局 1992 肥料管理手册 96頁。
6. 嚴式清 1991 塑化污染的防治。土壤管理手册。國立中興大學土壤調查試驗中心編 178-183頁。
ABSTRACT

The levels of eight heavy metals in 121 organic fertilizers (including 19 humic acids and 102 mixed organic fertilizers) were analyzed. The result shows the levels of Cr, Cu and Zn are generally higher than As, Cd, Hg, Ni and Pb. The increasing rates of heavy metal contents in soil per year due to mixed organic fertilizer application were calculated. Those for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn are: 0.04, 0.04, 7.51, 1.57, 0.005, 0.23, 0.32 and 5.78 mg/kg per year, respectively. The period of multiple organic fertilizer application to accumulate heavy metal that reach the phytotoxic level to plant is also evaluated. The periods of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn are: 268, 57.8, 8.10, 26.7, 340, 353, 241 and 27.4 years, respectively.

(Key words: organic fertilizer, heavy metal, arsenic, cadmium, chromium, copper, mercury, nickel, lead, zinc, phytotoxicity)